		[2]
Roll No	Total Printed Pages - 12	1. A set of linear equations is represented by the matrix equation $Ax = b$. The necessary condition for the existence
		of a solution for this system is
F - 551		(A) A must be invertible.
		(B) B must be linearly independent of the columns of A.
M.A./M.Sc (Second Semester)		(C) B must be linearly dependent of the columns of A.
EXAMINATION, MA	Y-JUNE, 2022	(D) None of these.
STATISTICS		2. If rank (A) = 2 and rank (B) = 3 then rank (AB) is :-
Paper-I		(A) 5
(Linear Algebra)		(B) 6
		(C) 3
Time : Three Hours]	[Maximum Marks:80	(D) Data inadequate
Note: Attempt all sections as directed.		3. For what values of λ , do the simultaneous equation 2x + $3y = 1$, $4x + 6y = \lambda$ have finite solutions?
Section-A		(A) $\lambda = 0$
(Objective/Multiple Choice Questions)		(B) $2 = 1$
(1 mark each)		
Note : Attempt all questions.		$(C) \chi = 2$
Chose the correct answer:		(D) $\lambda \neq 0$
	P.T.O.	F - 551

4. The condition for which the Eigen values of the matrix

 $\begin{bmatrix} 2 & 1 \\ 1 & k \end{bmatrix}$ are positive is :

(A)
$$k > \frac{1}{2}$$

(B)
$$k < -\frac{1}{2}$$

- (C) k > -2(D) k > 0
- 5. The rank of the matrix $(m \times n)$ where m < n cannot be more than
 - (A) m
 - (B) n
 - (C) m × n
 - (D) n m
- 6. If A and B are square matrices of the same order, then tr (AB) =

P.T.O.

- (A) tr (A + B)
- (B) tr (A) + tr (B)
- (C) tr (A) tr (B)
- (D) tr (BA)
- F 551

- 7. If A and B are symmetric matrices of same order, then
 - (A) AB is always symmetric
 - (B) AB is skew-symmetric
 - (C) AB is never symmetric
 - (D) AB is symmetric if and only if AB = BA
- 8. Find the sum of the Eigen values of the matrix
 - $\mathbf{A} = \begin{bmatrix} 3 & 2 & 4 \\ 0 & 4 & 6 \\ 5 & 2 & 1 \end{bmatrix}$
 - (A) 7
 - (B) 8
 - (C) 9
 - (D) 10
- 9. Consider the following two statements
 - T The maximum number of linearly independent column vectors of a matrix A is called the rank of A.
 - I If A is an n × n square matrix, it will be non singular is rank (A) = n. with reference to the above statements, which of the following applies?
 - (A) Both the statements are true.
- F 551

	[5]		[6]	
(B)	Both the statements are false.		13. A ring R is called Bolean Ring if for "x belong to R"	
(C)	Statement I is true but statement II is false.		(A) $x^2 = x$	
(D)	Statement II is true but statement I is false.		(B) $r^2 - a$	
10. Ring (Q, +, •), (R, +, •) and (C, +, •) where Q, R and C are rational real and complex numbers are		and C	(C) $x = e^{-e^{-x^2}}$	
(A)	Field		(C) None of these	
(B) Normal Subgroup			14. Number of automorphism from $Q(\sqrt{2})$ to $Q(\sqrt{3})$ is.	
(C)	(C) Group			
(D)	None of these		(A) 1	
11. A rii	ng $(R, +, \bullet)$ with identity is said to be.		(B) 2	
(A)	Normal		(C) 3	
(B)	(B) Ring			
(C)	Division ring		(D) 0	
(D)	None of these		15. The set R consisting of single element 0 with two binary	
12. Every field is			operations defined by $0 + 0 = 0$ and $0.0=0$ is a ring. This	
(A)	Group		ring is called.	
(B)	Semi-group		(A) identity ring	
(C)	Integral domain		(B) null ring	
(D)	None of these		(C) integral domain	
			(D) None of these	
F - 551		Р.Т.О.	F - 551	

[7]

16. The number of elements in a finite group is called the of the group.

(A) size

- (B) spectrum
- (C) order
- (D) none of these
- 17. If the dimensions of subspaces W_1 and W_2 of a vector W are respectively 5 and 7 and dim $(W_1+W_2)=1$ then dim $(W_1 \cap W_2)$ is
 - (*r*₁ + *r*₂)
 - (A) 5

(B) 7

- (C) 9
- (D) 11
- 18. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation such that T
 - ((1, 2)) = (2, 3) and T ((0, 1)) = (1, 4). Then T ((5, -4))

P.T.O.

is

- (A) (6, -1)
- (B) (-6, 1)
- (C) (-1,6)
- (D) (1, 6)
- F 551

19. Cancellation laws are always satisfied in -

- (A) Integral domain
- (B) Ring
- (C) Commutative ring
- (D) Ring with unit element
- 20. Let L/K be a finite extension of fields. Which of the following assertions is correct?
 - (A) If the characteristic of K is zero, then L/K is normal.
 - (B) If the characteristic of K is zero, then L/K is separable.
 - (C) If L/K is normal, then L/K is a Galois extension.
 - (D) If the characteristic of K is positive, then L/K is normal if and only if it is separable.

Section-B

(Very Short Answer Type Questions)

(2 marks each)

Note : Attempt all questions.

- 1. Define Ring and Ring automorphism.
- 2. Define Field and polynomial over the field.
- F 551

- 3. Define Principal Ideal Domain.
- 4. Let $T: V \rightarrow W$ be a linear transformation between vector spaces. Then define the kernel of T (*ie*.kerT).
- 5. Define scalar matrix and non-singular matrix.
- 6. What is the canonical form of a matrix?
- 7. Define Vector space.
- 8. What are the properties of vector addition?

Section C

(Short Answer Type Questions)

(3 marks each)

P.T.O.

Note : Attempt all questions.

- 1. Prove that any finite integral domain is field.
- 2. Prove that if an integral domain I not possessing the unity clemet is of characteristic $p \neq 0$, then $px = 0 \forall x \in I$, and if m mx \neq 0 if $x \neq 0$.
- 3. Define orthogonal matrices and give its properties.
- 4. Find the zeros of the polynomial.

 $f(x) = x^4 + 2x^3 - 21x^2 - 22x + 40$

F - 551

[10]

if they are in A.P.

- If a determinant A has two identical columns or two identical rows then prove that |A| = 0.
- 6. Let $A = \begin{bmatrix} \sqrt{2} & 1 \\ 0 & \sqrt{2} \end{bmatrix}$. Find all Eigen vectors of A. Is A diagonalizable i.e. does there exist an invertible S such that S⁻¹AS is diagonal. Justify you answer.
- 7. Define row-reduced echelon matrix and give its example.
- 8. Prove that a non-empty subset W of V is a subspace of V if and only if for each pair of Vector α , β in W and each scalar c in F the vector $C \alpha + \beta$ is again in W.

Section D

(Long Answer Type Questions)

(5 Marks each)

Note : Attempt all questions.

1. Let A, B, C be matrices with proper dimensions. Then prove that matrix multiplication is distributive with respect to matrix addition i.e.

A(B + C) = AB + AC.

OR

F - 551

[11]

Show that every square matrix is uniquely expressible as the sum of a symmetric matrix and a skew symmetric matrix.

2. Show that the matrix $A = \begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{bmatrix}$ satisfies Coley-Hamilton theorem.

OR

Define cyclic group and give its properties.

3. Find the rational zeros and the decomposition of the polynomial

$$f(x) = 4x^4 + 8x^3 + 7x^2 + 8x + 3$$

Over the field of rational numbers.

OR

Prove that if a set S of vectors spans a finitedimensional vector space V(f), there exists a subset of S which forms a basis of V.

4. Use the Gram-Schmidt process to find an orthonormal basis of the subspace

W = span {[1 1 0], [1 1 1]} of R₃.

OR

F - 551

If *f* is a homomorphism or linear transformation of U(f)into V(f), then f(0) = 0

i.e their zero vectors correspond, and $f(-\alpha) = -f(\alpha), \alpha \in \cup$.